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Landscape heterogeneity and soil biota are central
to multi-taxa diversity for oil palm landscape
restoration
Vannesa Montoya-Sánchez 1,2✉, Holger Kreft 1,3, Isabelle Arimond 4,5, Johannes Ballauff6,

Dirk Berkelmann7, Fabian Brambach 1, Rolf Daniel 7, Ingo Grass 8, Jes Hines 9,10, Dirk Hölscher 3,11,

Bambang Irawan12, Alena Krause13, Andrea Polle 3,6, Anton Potapov13, Lena Sachsenmaier 1,9,14,

Stefan Scheu 3,13, Leti Sundawati15, Teja Tscharntke5, Delphine Clara Zemp 1,2,3,16 &

Nathaly Guerrero-Ramírez1,16

Enhancing biodiversity in monoculture-dominated landscapes is a key sustainability challenge

that requires considering the spatial organization of ecological communities (beta diversity).

Here, we tested whether increasing landscape heterogeneity, through establishing 52 tree

islands in an oil-palm landscape, is a suitable restoration strategy to enhance the diversity of

six taxa (multi-taxa diversity). Further, we elucidated whether patterns in the spatial dis-

tribution of above- and below-ground taxa are related, and their role in shaping multi-taxa

beta diversity. After five years, islands enhanced diversity at the landscape scale by fostering

unique species (turnover). Partial correlation networks revealed that dissimilarity, in vege-

tation structural complexity and soil conditions, impacts multi-taxa beta diversity and turn-

over. In addition, soil fauna, bacteria, and fungi were more strongly associated with the overall

community than aboveground taxa. Thus, strategies aiming to enhance multi-taxa diversity

should consider the central role of landscape heterogeneity and soil biota.
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Habitat loss and degradation of natural ecosystems are
major drivers of the global biodiversity crisis1,2, with
more than half of the terrestrial land surface converted for

anthropogenic uses3. Croplands and pastures have become one of
the larger terrestrial land cover types on the planet4, with the net
increase in tropical regions exceeding 100 million ha/decade,
during the 1980s and 1990s5,6. Across the tropics, between 1980
and 2014, oil palm production increased 15-fold7, contributing to
land-use change and intensification and impacting global biodi-
versity hotspots. Specifically, oil palm plantations occupy 21
million hectares, mostly in Indonesia and Malaysia8. In the face of
this biodiversity crisis, there is currently an unprecedented poli-
tical will to restore degraded ecosystems and landscapes globally9.
Therefore, it is fundamental to bring a complementary perspec-
tive to the United Nations (UN) decade on Ecosystem Restora-
tion by expanding the restoration scope from degraded and
abandoned lands to include the enrichment of biodiversity in
monoculture-dominated landscapes.

Embedding small patches of native trees (“tree islands”) in
degraded landscapes is a promising strategy to enhance biodi-
versity and facilitate landscape restoration10. By actively planting
trees or through natural regeneration, integrating natural habitats
into monoculture-dominated landscapes can positively affect
environmental heterogeneity10–12, where heterogeneous habitats
can be associated with higher species diversity across taxa and
spatial scales13,14. However, it remains uncertain to what extent
environmental heterogeneity at the landscape scale (i.e., land-
scape heterogeneity) can be leveraged to enhance the diversity of
multiple taxonomic groups (i.e., multi-taxa diversity) in
monoculture-dominated landscapes.

To inform landscape restoration practices, it is essential to
integrate insights from community assembly mechanisms; for
example, through beta diversity, defined as “the extent of change
in community composition”15. The assembly of ecological com-
munities is determined by biotic and abiotic filtering, environ-
mental drift, and dispersal16,17. For instance, through direct and
indirect species interactions, biotic filtering may play an impor-
tant role in shaping biodiversity18–20 and the spatial organisation
of (meta)communities21–24, explaining the growing interest in
understanding the role of biotic interactions on community
assembly in restoration contexts25–27. In particular, interactions
between above- and below-ground components of ecosystems,
e.g., between plants and soil organisms, can drive ecological
processes at the community and ecosystem level28. Yet, our
understanding of assembly mechanisms of multi-taxa commu-
nities in human-modified landscapes, particularly in the tropics,
remains limited29,30.

Here, we assessed if multi-taxa diversity can be enhanced in
large monoculture-dominated landscapes by embedding envir-
onmentally dissimilar tree islands. Furthermore, we investigated
to what extent biotic associations are central to defining the
spatial distribution of multi-taxa communities (i.e., multi-taxa
beta diversity). To this end, we used comprehensive data from a
tropical biodiversity enrichment experiment (EFForTS-BEE
[Ecological and socio-economic functions of tropical lowland
rainforest transformation systems: biodiversity enrichment
experiment]31), located in Sumatra, Indonesia, a global hotspot of
biodiversity loss32 and recent tropical deforestation33. Embedded
within a 140-ha oil palm plantation, 52 experimental tree islands
were established, varying in island size (from 25 to 1600m2) and
planted tree diversity (from zero to six native tree species plan-
ted). In our study, we defined a landscape as a geographical area
distinguished by natural and human-induced landscape
elements34, with tree islands as the landscape elements (and no
other surrounding land-use patches). This landscape-scale per-
spective with tree islands makes EFForTS-BEE unique among the

largest network of tree diversity experiments worldwide
(TreeDivNet35). We analysed multi-taxa diversity sampled three
to five years after establishment, when the tree islands sub-
stantially differed in vegetation structural complexity as a result of
varying planted diversity and island size36. We calculated beta
diversity partitioned into its turnover and nestedness compo-
nents, the main patterns driving differentiation among
communities37. Turnover takes place when some species are
replaced by others in different sites38, and nestedness occurs
when from rich sites, small subsets are formed39,40 (i.e., species
losses and gains). We used community data of understorey
arthropods, soil biota (fungi, bacteria, and fauna), herbaceous
plants, and trees (excluding planted trees). We hypothesised that
tree islands, varying in vegetation structural complexity and soil
conditions, will increase total landscape diversity (i.e., gamma
diversity) by tree islands fostering unique species resulting in
higher species turnover across islands (Fig. 1).

To reveal the factors shaping the spatial distribution of multi-
taxa communities (beta diversity, turnover, and nestedness)
across tree islands, we used partial correlation networks, which
quantify associations among landscape heterogeneity and beta
diversities (or its underlying components) across the six taxa.
Our landscape heterogeneity variables included (i) the dissim-
ilarity in three-dimensional vegetation structure (vegetation
structural complexity) using mean fractal dimension (Mean-
FRAC) from terrestrial laser scans and (ii) the dissimilarity in
soil conditions using soil phosphorus concentration between
islands. We selected MeanFRAC because it is associated with
enriched tree island conditions, i.e., planted tree composition,
richness, and tree island size36 and soil phosphorus because
lowland tropical forests are associated with strongly-weathered
soils poor in rock-derived nutrients such as phosphorus41.
Further, both, MeanFRAC and soil phosphorus showed the
highest network connectivity compared with other vegetation
structural complexity metrics and soil measurements (see
methods). Partial correlations can provide insights about asso-
ciations shaping the spatial organisation of communities across
taxa, e.g., similar niche requirements, dispersal limitations, and
potential biotic interactions due to co-occurrences; this
approach is particularly helpful in hyperdiverse regions such as
the tropics, where biotic interactions are predicted to strongly
structure community assembly21 but assessing interactions is
extremely challenging42,43. In the network, nodes represent
landscape heterogeneity and beta diversity (or one of its two
components) for each taxon. The links in the network represent
associations between the nodes. For example, positive associa-
tions between landscape heterogeneity and beta diversity of
multiple taxa translate into greater dissimilarity in vegetation
structural complexity, soil conditions, or both between islands
being associated with dissimilar multi-taxa communities. A
positive association between the beta diversity of two taxa (e.g.,
herbaceous plants and soil bacteria) implies that tree islands
that differ in herbaceous plant composition also differ in soil
bacteria composition. Similarly, a positive association between
turnover (or nestedness) between herbaceous plants or soil
bacteria implies that tree islands that foster unique species (or
are driven by species losses and gains) for herbaceous plants
also show the same pattern(s) for soil bacteria (Fig. 1).

We hypothesised that landscape heterogeneity (i.e., dissim-
ilarity in vegetation structural complexity and dissimilarity in soil
conditions), will be highly connected in the networks (i.e., have a
high strength) because it influences multi-taxa beta diversity via
habitat provision and environmental filtering. Specifically, dis-
similarity in vegetation structural complexity might influence the
spatial composition of multi-taxa by providing a higher number
of niches and habitats, not only above- (e.g., structurally complex
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and open habitats)13,44 but likely also below-ground45. In addi-
tion, dissimilarity in soil conditions may influence the spatial
composition of herbaceous plants and trees as well as soil biota
via bottom-up processes46. While dissimilarity in vegetation
structural complexity is expected to be mainly associated with
beta diversity of above-ground taxa, associations between vege-
tation structural complexity and below-ground taxa might be
driven by plant-soil feedbacks28,46, e.g., soil fauna in tropical
plantations relies on vegetation via plant litter and root-derived
resources47. Moreover, we hypothesised plants, either through
vegetation structural complexity or composition of herbaceous
plants or trees, to be highly connected in the networks, by con-
necting above- and below-ground taxa via non-trophic and

trophic interactions. For example, vegetation may connect above-
and below-ground biota via biotic interactions with pathogens,
mycorrhizal fungi, and decomposers28,48, as well as with
understory herbivores and pollinators49,50.

Results and discussion
Gamma and beta diversity across tree islands embedded in an
oil palm plantation. Across the 52 tree islands, we recorded 958
morphospecies of understorey arthropods, 8159 operational
taxonomic units (OTUs) of soil fungi, 47,856 OTUs of soil bac-
teria, 27 taxonomic groups of soil fauna (Supplementary
Table S4), 75 herbaceous plant species, and 50 trees species—
excluding planted trees, (gamma diversity; all classifications are
referred to as “species” below). Overall, across the 52 tree islands,
beta diversity (calculated as Jaccard pairwise dissimilarity) varied
among taxa, ranging from 0.31 for soil fauna to 0.77 for under-
storey arthropods. Beta diversity was mainly driven by species
turnover, while nestedness, except for trees and soil fauna, played
a minor role (Fig. 2). Specifically, the highest species turnover was
found for soil fungi, understorey arthropods, and soil bacteria,
accounting for ~94% of the total beta diversity. Herbaceous plant
turnover made up 78% of total beta diversity. Species turnover
was lower for trees (52%) and soil fauna (59%). We did not find
major differences in the results when calculating beta diversity
using Sørensen pairwise dissimilarity (Supplementary Figs. S2
and S5). Hence, our results consistently indicate that beta
diversity is primarily associated with the uniqueness of species
assemblages rather than smaller assemblages being a subset of
larger ones. These results align with studies in tropical regions
where beta diversity patterns across different organisms have
identified species turnover as the dominant component driving
beta diversity in environmentally heterogeneous ecosystems51–53.
Consequently, promoting the uniqueness of species assemblages
with multiple tree islands appears as a promising strategy for
enhancing biodiversity in monoculture-dominated landscapes, at
least during the first years after tree island establishment.

The differences in beta diversity across taxa that our study
revealed might be explained by ecological processes related to

Fig. 1 Tropical biodiversity enrichment experiment (EFForTS-BEE) and
conceptual figures. (a) 52 experimental tree islands were embedded within
a 140-ha oil palm plantation. Tree islands varying in tree native planted
diversity and island size; (b) example of a tree island using a drone image;
(c) Conceptual example of a heterogeneous landscape with four tree
islands varying in size and diversity level; (d, e, f) examples of beta diversity
(partitioned into turnover and nestedness components) for understorey
arthropods, herbaceous plants, and soil bacteria. If multi-taxa beta diversity
is driven by habitat differentiation, higher landscape heterogeneity
(resulting from islands differing in their vegetation structural complexity) is
expected to be associated with the beta diversity of multiple taxa. In
contrast, if multi-taxa beta diversity is driven mostly by stochastic
processes such as dispersal, landscape heterogeneity may not be
associated with changes in beta diversity. Beta diversity patterns may be
driven by species turnover, with higher turnover resulting in higher gamma
diversity, or by nestedness (i.e., gain and species losses in light grey in the
bars). Positive associations between landscape heterogeneity and beta
diversity of multiple taxa translate into greater dissimilarity in vegetation
structural complexity between islands being associated with dissimilar
multi-taxa communities e.g., (c, d) landscape heterogeneity and
understorey arthropods, and (c, e) landscape heterogeneity and
herbaceous plants. A positive association between the beta diversity of two
taxa (e.g., herbaceous plants and soil bacteria) (e, f) implies that tree
islands that differ in herbaceous plant composition also differ in soil
bacteria composition.
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dispersal ability, body size, and life history. For instance, due to
the long lifespan of trees, the influence of processes such as local
extinction and colonisation may require more time than for other
taxa. Furthermore, tree beta diversity patterns may be shaped
mainly by seed sources in the surrounding landscape and by tree
species with higher dispersal capacities54, explaining the unex-
pected high nestedness in human-modified ecosystems compared
to tropical forests for trees51. While we expect overall patterns to
hold, the influence of differences in sample coverage across taxa—
particularly incomplete coverage for highly diverse taxon such as
fungi—in terms of turnover and nestedness under- or over-
estimations remains unknown. Finally, taxonomic resolution may
impact our ecological understanding55, particularly for soil fauna
that mainly was assessed at the level of orders (that often
represent functional groups56). Contrasting resolutions reflect the
challenge of biodiversity assessment in the species-rich tropics42.
Despite that, soil fauna was a good indicator of overall multi-taxa
community dissimilarity (see below). Therefore, we expect this
crucial role to remain or be strengthened with higher resolution
but increases in resolution will likely result in higher beta
diversity due to higher turnover.

Insights of multi-taxa beta diversity through landscape het-
erogeneity and biotic associations. Beta diversity patterns across
multiple taxa were correlated, with the network for beta diversity
comprising 17 edges (Fig. 3a, Supplementary Table S6). The most
connected taxa were soil fauna and bacteria (strength, i.e., the
sum of absolute edge weights,= 0.82 and 0.71, with five and four
edges with other nodes, respectively; Fig. 4a). By contrast, trees
were the least connected (strength= 0.46, with four edges). The
highest correlation coefficient was observed between soil fungi
and bacteria beta diversity (+0.25). Turnover patterns for multi-
taxa diversity were also correlated, with the network for turnover
comprising eight edges (Fig. 3b, Supplementary Table S7).
Turnover of soil fauna and understorey arthropods were dis-
connected from the network. In other words, neither the turnover
patterns of soil fauna nor understorey arthropods follow dis(-
similar) turnover patterns of other taxa nor landscape

heterogeneity. Finally, nestedness patterns for multi-taxa diversity
were correlated except for trees (Fig. 3c, Supplementary Table S8),
with the network retaining six edges. Yet, the nestedness network
had low stability. Together, these results suggest that direct and
indirect associations shape the spatial organisation of commu-
nities across taxa in tropical human-modified landscapes, sup-
porting previous studies in temperate ecosystems23,24.

Our results point toward the key role of below-ground
organisms in structuring multi-taxa beta diversity patterns. Soil
biota (soil fauna, bacteria, and fungi) were central to the overall
ecological community. In other words, beta diversity of soil biota
was associated with beta diversity patterns of other taxa and with
landscape heterogeneity variables (i.e., dissimilarity in vegetation
structural complexity and soil conditions) (for different centrality
indices, see Fig. 3 and Supplementary Fig. S3). Soil biota may act
as an indicator of current conditions (i.e., tree islands), the result
of legacy effects from previous land-uses (e.g., oil palm plantation
or tropical forest), or both57. For example, soil fauna composition
can be associated with differences in specific organic materials
(reflecting the heterogeneity before the land-use conversion) and
time delays because of the limited dispersion of soil fauna58.
Similar beta diversity patterns between soil fauna and soil fungi
may be underlain by species interactions (e.g., soil fungi as an
important food source in soil food webs59), similar niche
requirements, and/or dispersal limitations influencing soil biota
(symbiotroph, pathotroph, and saprotroph, Supplementary
Figs. S4–S7; Supplementary Tables S9–S11). Associations between
the above- and below-ground systems, e.g., plant and soil biota,
can result from positive or negative plant-soil feedbacks that
influence community and ecosystem-level processes28,48. Soil
fauna potentially influences vegetation dynamics and above-
ground biodiversity60. For instance, soil biota has been shown to
affect understorey arthropods (particularly pollinators, Supple-
mentary Figs. S4–S6) when soil biota indirectly affects floral traits
(e.g., bacteria, root herbivores, and mycorrhizal fungi), influen-
cing pollination attractions and plant fitness61. While plant-soil
feedback experiments would be required to disentangle the
mechanisms of above- and below-ground associations shaping
multi-taxa dynamics, here we provide further evidence high-
lighting the importance of integrating the below-ground com-
partment towards elucidating network structure and associations
in monoculture-dominated landscapes.

Landscape heterogeneity (i.e., dissimilarity in vegetation
structural complexity or soil conditions) played a crucial role in
all three networks (Fig. 3). For instance, dissimilarity in
vegetation structural complexity was the most connected node
(strength= 0.84 with four positive and two negative edges to
other nodes) in the beta diversity network. Besides, soil P was the
most connected node (strength= 0.49 with four edges, Fig. 4b) in
the species turnover network. The highest and lowest correlation
of soil P was found with soil bacteria and fungi beta diversity,
respectively (+0.18 and +0.11). This suggests that landscape
heterogeneity can promote beta diversity by fostering different
species compositions, reinforcing the role of enriched tree islands
in influencing community assemblages and biodiversity at the
landscape scale (i.e., beta and gamma diversity). Further, it
implies that dissimilarity in abiotic conditions can directly or
indirectly impact multiple taxa. The influence of vegetation
structural complexity on multi-taxa diversity may act via altering
light and microclimatic conditions62 and other characteristics
associated with variation in local planted tree species diversity
and identity, with both shaping vegetation structural
complexity36. Furthermore, the influence of tree islands on
multi-taxa diversity might reflect the removal of environmental
filtering associated with conventional management, such as
liming and fertilisation, which is responsible for biotic

Fig. 2 Turnover and nestedness components of beta diversity. Beta
diversity for the six taxa were calculated with the Jaccard index. Similar
results were found when beta diversity was calculated using Sørensen
pairwise dissimilarity (Supplementary Fig. S2).
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homogeneity in monoculture-dominated landscapes. Further
possible mechanisms include enhanced nutrient cycling and
plant litter decomposition28,63, particularly in ecosystems under
transition (e.g., primary or secondary succession)64.

Conclusions
We conclude that enriching monocultures with tree islands
varying in vegetation structural complexity (as a result of varia-
tion in planted tree diversity and/or island size)36 can foster
unique ecological communities above- and below-ground and
thereby promote multi-taxa diversity at the landscape scale (beta
and gamma diversity). Additionally, we suggest distributing tree
islands across the monoculture-dominated landscape to enhance
multi-taxa diversity by capturing contrasting biotic and abiotic
conditions. Landscape restoration strategies aiming to enhance
multi-taxa diversity should consider not only key abiotic condi-
tions but also the extent to which biotic associations play an
important role in shaping ecological communities at the land-
scape scale. By enhancing biodiversity at the landscape level in
monoculture-dominated tropical landscapes, we bring a com-
plementary perspective to the UN Decade on Ecosystem
Restoration and provide experimental evidence urgently needed
for enriching biodiversity in productive agricultural landscapes.

Materials and Methods
Study area. This study was conducted in the Biodiversity Enrichment Experiment
(EFForTS-BEE) located in Jambi province, Sumatra, Indonesia. The main aim of
EFForTS-BEE is to evaluate the potential of establishing tree islands10 within an
industrial oil palm plantation as a restoration measure to enhance biodiversity and
ecosystem functioning while maintaining financial benefits31,65. The area is char-
acterised by a humid tropical climate with two peak rainy seasons (March and
December) and a dryer period extending from July to August31. The mean tem-
perature is 26.7 ± 1.0 °C, and the mean annual precipitation is 2235 ± 385mm

(1991–2011). The predominant soil type in the region is loamy Acrisol66. EFForTS-
BEE was established in December 2013 and consists of 52 experimental plots, i.e.,
tree islands, varying in island sizes of 25 m2, 100 m2, 400 m2, and 1600 m2, and
planted tree diversity level 0, equal to no tree planted, 1, 2, 3, and 6 tree species
planted in a plot. Tree islands were embedded in a 140-ha oil palm plantation
(01.95° S and 103.25° E, 47 ± 11 m a.s.l.), with the planting of the oil palm starting
in 200131. Fertilisation, herbicide, and pesticide application stopped after the
establishment of tree islands31. Regular management, including manual weeding of
the understorey, stopped 2 years after tree planting, allowing for natural regen-
eration in the tree islands. The experiment follows a random partition design
aiming to disentangle the linear effects of tree diversity and plot size and the non-
linear effects of tree species composition31. For details of the experimental design,
see ref. 31. The planted species represent native, multi-purpose trees used for the
production of fruits (Parkia speciosa Hassk, Archidendron jiringa (Jack) I.C.Niel-
sen, and Durio zibethinus L.), timber (Peronema canescens Jack, and Shorea
leprosula Miq.), and natural latex (Dyera polyphylla (Miq.) Steenis)67.

Data collection. We quantified vegetation structural complexity by terrestrial laser
scanning between September and October 201636. We calculated Effective Number
of Layer (ENL), which describes the vertical structure of forest stands and is
influenced by the stand height and the vegetation distribution across vertical
layers68. In addition, we calculated Mean Fractal Dimension (MeanFRAC), defined
as the arithmetic mean of fractal dimensions of the polygons formed by cross-
sections of the 3D point cloud, describing the geometric complexity of the stand69.
MeanFRAC is associated with enriched tree island conditions, i.e., planted tree
composition, richness, and tree island size36. Finally, we calculated the stand
structural complexity index (SSCI) by combining ENL and MeanFRAC in a single
indicator that is a holistic measure of stand structural complexity69,70. By con-
struction, the indicators do not scale with the area. All the indicators were calcu-
lated based on one single scan in the centre of each plot, thereby capturing the
potential influence of edge effects associated with differences in island sizes.

Soil nutrient variables, including total carbon (C) and nitrogen (N)
concentration (g mg−1), C-to-N ratio, and plant-available P concentration
(mg g−1), were quantified using the same soil samples as for soil fungi collected in
December 2016 (see below). Total C and N were determined via the combustion
method in a C/N analyser57. Plant-available P was quantified following Bray &
Kurtz71. The soil samples were mixed with Bray-I Extraction solution, shaken for
60 min, and filtered with phosphate-free filters. P concentration of filtrates was
measured using inductively coupled plasma mass spectrometry57.

Fig. 3 The role of landscape heterogeneity and biotic associations shaping multi-taxa beta diversity. Landscape heterogeneity refers to the dissimilarity
in vegetation structural complexity (measured through MeanFRAC) and soil conditions (measured through soil P) together. Nodes represent (a) total beta
diversity, (b) turnover, and (c) nestedness of multiple taxa and dissimilarity in vegetation structural complexity and soil conditions. Edges thicknesses, i.e.,
line thickness, are proportional to partial correlation coefficients, with grey and red edges representing positive (i.e., greater dissimilarity in vegetation
structural complexity between islands being associated with dissimilar multi-taxa communities or tree islands that differ in composition for a taxon also
differ in composition for another taxon) and negative (i.e., greater dissimilarity in vegetation structural complexity between islands being associated with
similar multi-taxa communities or tree islands that differ in community compositions for a taxon have similar community compositions for another taxon)
correlations, respectively. Edge length is not meaningful. Nodes with partial correlation coefficients equal to or near zero are not included in the
corresponding networks.
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The diversity data for this study were collected between October 2016 and May
2018. We sampled above-ground and below-ground taxa, including understorey
arthropods, soil biota (soil fungi, soil bacteria, and soil fauna), herbaceous plants,
trees, vegetation structural complexity measures, and soil conditions, with all
measurements within the 52 tree islands, i.e., plots. Arthropods sampled at the
height of the understorey vegetation (referred to as “understorey arthropods”) were
sampled three times with six pan traps (2 × 3 pan traps) equally distributed within
each plot, for 45 h from October 2016 to January 2017. The traps were made of
white plastic bowls coloured with yellow UV paint72 and filled with water and a
drop of detergent. All individuals were preserved in 70% Ethanol, sorted by
morphospecies, and subsequently identified into the higher taxonomic
classification possible (i.e., 14 groups/families) and their corresponding functional
groups (e.g., Table S5).

Soil biota and herbaceous plants were surveyed in a subplot of 5 × 5 m area
established within each plot31. The subplot was assigned randomly within each plot
at a minimum distance of 1.5 m from the plot edge. Specifically, soil fungi were
sampled and collected in December 2016 from three soil cores per plot (10 cm
depth and 4 cm diameter) and identified through DNA extraction and next-
generation sequencing57. OTUs were classified taxonomically using the BLAST

algorithm (blastn, v2.7.1;73) and the UNITE v7.2 database
(UNITE_public_01.12.2017.fasta;74). Soil bacteria were obtained for each subplot
from three 10 cm cores of topsoil placed at 1 m far from the adjacent trees. The soil
cores were mixed, homogenised and cleared from roots before DNA and RNA
extraction and posterior classification75. In each plot, soil fauna communities were
assessed in four soil samples of 16 × 16 cm using a spade down to a depth of 5 cm
plus the entire overlying litter layer. The animals extracted from the soil samples by
heat were counted and classified into taxonomic groups, corresponding to key
functional soil invertebrate guilds (mainly groups/families, Supplementary
Table S4)56,76,77. Herbaceous plants, described as all non-woody plants lower than
1.3 metres in height, were identified from February to March 2018. Trees refer to all
free-standing woody plants with a minimum height of 1.3 m, inventoried in the
total area of the experimental tree islands in August 2018, excluding the trees
planted at the onset of the experiment.

Beta diversity and landscape heterogeneity. For each taxon, beta diversity was
calculated using species incidence-based pairwise dissimilarity matrices (presence-
absence data) with the function beta.pair from the package betapart version 1.5.478.

Fig. 4 Importance of the individual taxa and landscape heterogeneity in shaping multi-taxa beta diversity. Landscape heterogeneity refers to the
dissimilarity in vegetation structural complexity (measured through MeanFRAC) and soil conditions (measured through soil P) together. The centrality
value (x-axis) for each node (y-axis) is presented. Nodes represent (a) the total beta diversity and (b) the turnover of multiple taxa and dissimilarity in
vegetation structural complexity and soil conditions. The centrality value is quantified by the strength (i.e., the sum of absolute edge weights) in the
undirected partial correlation networks and shown as standardised z-scores. Negative values indicate low centrality, whereas positive values indicate high
centrality. Correlation stability coefficients of strength for beta diversity and turnover were 0.36 and 0.44, respectively. For nestedness, the correlation
stability coefficient was lower than 0.25, suggesting lower stability of this network that is therefore not presented in this figure (see Supplementary Fig. S3).
Other centrality measures, i.e., betweenness and closeness, are shown in Supplementary Fig. S3. Observed and non-parametric bootstrap mean and 95%
CI estimated are shown in Supplementary Fig. S8 and S9.
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We partitioned beta diversity into turnover and nestedness components37,78. The
Jaccard pairwise dissimilarity (βjacc) among plots was computed as βjacc= βjtu+
βjne, where βjtu accounted for the turnover fraction of Jaccard pairwise dissimilarity,
and βjne accounted for the nestedness-resultant dissimilarity fraction, measured on
a normalized scale from zero to one. We calculated beta diversity using community
data (incl. operational taxonomic units, taxonomic groups, morphospecies, or
species—referred to as species in the text). In addition, we calculated beta diversity
using Sørensen pairwise dissimilarity, which incorporates turnover and richness
differences as βsor= βsim+ βsne. In this case, βsim accounted for turnover measured
as Simpson pairwise dissimilarity, and βsne accounted for the patterns of beta
diversity causing nestedness, measured as the nestedness-resultant dissimilarity
fraction of Sørensen dissimilarity (Supplementary Figs. S2 and S5). While Jaccard
considers the proportion of unique species in the entire pool, Sørensen considers
the proportion of unique species per site79. For calculating landscape heterogeneity
(dissimilarity in vegetation structural complexity and soil conditions), we calcu-
lated pairwise dissimilarity between all matrix rows, i.e., tree islands, using the
function dist from the R stats package. We used the Euclidean distance
method, calculated as a true straight-line distance between all matrix rows in
Euclidean space.

Multivariate normality was tested with Mardia’s multivariate skewness and
kurtosis coefficients using the function mvn from the R package MVN version 5.980.
When the test did not state multivariate normality, a non-paranormal transformation
to achieve Gaussian distribution was implemented using the function huge.npn and
the setting shrinkage based on a shrunken Empirical Cumulative Distribution
Function (ECDF) from the R package huge version 1.3.581.

Partial correlation networks. We applied partial correlation networks to study
associations between landscape heterogeneity and beta diversity (turnover or
nestedness) among multiple taxa. An association between taxa indicates the cov-
ariation of the spatial distribution of ecological communities among taxa. The
advantages of partial correlation networks are threefold: first, they describe cor-
relations between a set of conditionally independent variables82; second, they do
not require a priori knowledge of the structure83; and finally, the correlations can
be graphically represented and analysed to reveal key interdependencies and highly
connected variables84. Partial correlation networks have been widely used to infer
pairwise species interactions from observed presence-absence matrices83. A net-
work is composed of nodes and edges, where the nodes represent the beta diversity
(or turnover or nestedness) of the different taxa and the dissimilarity of vegetation
structural complexity and soil conditions. The edges (i.e., links connecting pairs of
nodes) represent correlations between nodes, in our case, undirected partial cor-
relation coefficients23. Edges can be either positive or negative correlations
(representing the covariation of the spatial distribution of ecological communities
between taxa), and can be absent, indicating no or weak correlation between a set
of variables85. When positive, the (dis)similarity in species composition between
tree islands changes in the same direction for both taxa. When negative, the (dis)
similarity in species composition for a taxon increases while it decreases for the
other taxon.

We used the graphical lasso method (Least Absolute Shrinkage and Selection
Operator) as implemented in the R package bootnet version 1.4.386 to build and
analyse the networks. This method displays the unconditional association between
two nodes once the influence of other variables is controlled (i.e., partial
correlations82), reducing the risk of spurious relationships that can emerge from
multicollinearity85. The Lasso method applies a regularisation penalty using a
tuning parameter to reduce the number of parameters displayed. As a result, only a
small number of partial correlations (i.e., the highest values) are used to explain the
interconnections among variables82. We selected the tuning parameter with the
Extended Bayesian Information Criterion EBIC87 using the function EBICglasso
from the package qgraph version 1.6.988 (tuning parameter= 0.5). The partial
correlations were represented graphically in networks with undirected weighted
edges (i.e., there is an association, but the direction is not determined) using ggraph
R package version 2.0.589. With the weighted networks, we consider the
correlations among nodes and the weight of these correlations (partial correlation
coefficients90).

We tested the influence of different landscape heterogeneity on network
connectivity. To do so, we included various combinations of vegetation structural
complexity metrics and soil conditions and measured the resulting number of
edges in the network and the proportional changes. Variables included SSCI, ENL,
and MeanFRAC as the vegetation structural complexity metrics and soil C, N, P, C-
to-N ratio, as the soil condition variables. We found the highest network
connectivity when MeanFRAC and soil P were included (Supplementary Tables S2
and S3). Other structural metrics or soil conditions did not increase network
connectivity and were highly correlated with other environmental variables
(Supplementary Table S1 and Fig. S1). Therefore, we only included MeanFRAC
(named hereafter as vegetation structural complexity) and soil P in the final
networks presented in this study.

We quantified the importance of specific nodes (i.e., certain taxon or a
particular environmental variable) for structuring or maintaining the overall (i.e.,
multi-taxa) network by calculating three centrality measures commonly used in
complex network approaches strength, betweenness, and closeness. Strength is the
sum of absolute edge weights that a node has with the others82. The higher the

strength value of a node, the higher the influence it has on influencing the
composition and structure of the community24. Betweenness looks at the
proportion of shortest paths between any pair of nodes that pass through a specific
node. The shortest path is defined as the path with the minimum distance
(calculated by adding the edges’ weights) needed to connect two nodes. Hence, a
node with high betweenness lies “in-between” other nodes’ shortest paths in the
network. High betweenness indicates that a node plays a crucial role in the
connectivity and stability of the network, for example, implying a cascading effect
with large consequences on the overall network when the node is lost91. Closeness
describes the undirected connectance of a node to the other nodes in a network,
calculated as the average distance of the shortest path from a specific node to all
other nodes82. Because of its proximity to all other nodes, the node with the highest
closeness centrality plays a crucial role in the overall network91 (Supplementary
Figs. S3 and S7).

The accuracy of the parameters and measures estimated in a network depends
greatly on sample size and variability90. Thus, we assessed the accuracy of the
different networks (i.e., sensitivity to sampling variation) by estimating confidence
intervals on the weight of the edges with a non-parametric bootstrapping of
1000 samples, with a confidence interval of 95%90, using the bootnet R package
version 1.4.386. To assess the stability of centrality indices, we used a case-dropping
subset bootstrap from the package bootnet. We calculated the correlation stability
coefficient (CS-coefficient), which represents the maximum number of
observations that can be dropped (in at least 95 % of the samples) so that the
correlation between original centrality indices and the indices re-calculated with a
subset of the data is 0.7 or higher82. The threshold considered stable for the CS-
coefficient should be no <0.25 and desirably >0.5. Results of the sensitivity analysis
are presented in Supplementary Figs. S8–S13.

Data were analysed with the software environment R, version 4.1.1 (R
Development Core Team, 2021), using the packages ade492, betapart78, bootnet86,
data.table93, ggplot294, ggraph89, glasso95, huge81, igraph96, MVN80, plyr97,
qgraph88, reshape298, rlist99, tidyverse100, and vegan101. Our code is based on the R
code provided by Ohlmann et al. (2018)23.

Data availability
The data of this study are publicly available from https://doi.org/10.6084/m9.figshare.
22938434. Supplementary tables S2 and S3 are publicly available from https://doi.org/10.
6084/m9.figshare.22955261.v1.

Code availability
The code to reproduce the results of this study is publicly available from https://doi.org/
10.6084/m9.figshare.22938434.
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